Detecting positive and purifying selection at synonymous sites in yeast and worm.
نویسندگان
چکیده
We present a new computational method to identify positive and purifying selection at synonymous sites in yeast and worm. We define synonymous substitutions that change codons from preferred to unpreferred or vice versa as nonconservative synonymous substitutions and all other substitutions as conservative. Using a maximum-likelihood framework, we then test whether conservative and nonconservative synonymous substitutions occur at equal rates. Our approach replaces the standard rate of synonymous substitutions per synonymous site, dS, with two new rates, the conservative synonymous substitution rate (dS(C)) and the nonconservative synonymous substitution rate (dS(N)). Based on the ratio dS(N)/dS(C), we find that 0.05% of all yeast genes and none of worm genes show evidence of positive selection at synonymous sites (dS(N)/dS(C) > 1). On the other hand, 9.44% of all yeast genes and 5.12% of all worm genes show evidence of significant purifying selection on synonymous sites (dS(N)/dS(C) < 1). We also find that dS(N) correlates strongly with gene expression level, whereas the correlation between expression level and dS(C) is very weak. Thus, dS(N) captures most of the signal of selection for translational accuracy and speed, whereas dS(C) is not strongly influenced by this selection pressure. We suggest that the ratio dN/dS(C) may be more appropriate than the ratio dN/dS to identify positive or purifying selection on amino acids.
منابع مشابه
Widespread positive selection in synonymous sites of mammalian genes.
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in pr...
متن کاملDetecting amino acid sites under positive selection and purifying selection.
An excess of nonsynonymous over synonymous substitution at individual amino acid sites is an important indicator that positive selection has affected the evolution of a protein between the extant sequences under study and their most recent common ancestor. Several methods exist to detect the presence, and sometimes location, of positively selected sites in alignments of protein-coding sequences...
متن کاملSelecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach
Biologically significant sites in a protein may be identified by contrasting the rates of synonymous (K(s)) and non-synonymous (K(a)) substitutions. This enables the inference of site-specific positive Darwinian selection and purifying selection. We present here Selecton version 2.2 (http://selecton.bioinfo.tau.ac.il), a web server which automatically calculates the ratio between K(a) and K(s) ...
متن کاملAiring the word on pollution.
Biologically significant sites in a protein may be identified by contrasting the rates of synonymous (Ks) and non-synonymous (Ka) substitutions. This enables the inference of site-specific positive Darwinian selection and purifying selection. We present here Selecton version 2.2 (http://selecton. bioinfo.tau.ac.il), a web server which automatically calculates the ratio between Ka and Ks (u) at ...
متن کاملAccuracy and power of the likelihood ratio test in detecting adaptive molecular evolution.
The selective pressure at the protein level is usually measured by the nonsynonymous/synonymous rate ratio (omega = dN/dS), with omega < 1, omega = 1, and omega > 1 indicating purifying (or negative) selection, neutral evolution, and diversifying (or positive) selection, respectively. The omega ratio is commonly calculated as an average over sites. As every functional protein has some amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2010